Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Environ Res ; 247: 118201, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220074

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) has received extensive attention due to its ubiquitous distribution and potential toxicity. However, the distribution characteristics of 6PPD-quinone in dust from e-waste recycling areas and the consequential health risks to children are unclear. A total of 183 dust samples were collected from roads (n = 40), homes (n = 91), and kindergartens (n = 52) in Guiyu (the e-waste-exposed group) and Haojiang (the reference group) from 2019 to 2021. The results show that the concentrations of 6PPD-quinone in kindergarten and house dust from the exposed group were significantly higher than those from the reference group (P < 0.001). These findings show that e-waste may be another potential source of 6PPD-quinone, in addition to rubber tires. The exposure risk of 6PPD-quinone in children was assessed using their daily intake. The daily intake of 925 kindergarten children was calculated using the concentration of 6PPD-quinone in kindergarten dust. The daily intake of 6PPD-quinone via ingestion was approximately five orders of magnitude higher than via inhalation. Children in the exposed group had a higher exposure risk to 6PPD-quinone than the reference group. A higher daily intake of 6PPD-quinone from kindergarten dust was associated with a lower BMI and a higher frequency of influenza and diarrhea in children. This study reports the distribution of 6PPD-quinone in an e-waste recycling town and explores the associated health risks to children.


Assuntos
Benzoquinonas , Exposição Ambiental , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Índice de Massa Corporal , Poeira , Quinonas , Diarreia/induzido quimicamente , Diarreia/epidemiologia
2.
Am J Physiol Cell Physiol ; 326(1): C177-C193, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955339

RESUMO

Fibroblasts are the main producers of extracellular matrix (ECM) responsible for ECM maintenance and repair, a process often disrupted in chronic lung diseases. The accompanying mechanical changes adversely affect resident cells and overall lung function. Numerous models have been used to elucidate fibroblast behavior that are now evolving toward complex three-dimensional (3-D) models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from two-dimensional (2-D) to 3-D cell culture. This study compared the gene expression profiles of primary human lung fibroblasts from seven subjects with normal lung function, that were cultured for 24 h on 2-D collagen I-coated tissue culture plastic and in 3-D collagen I hydrogels, which are commonly used to mimic ECM in various models, from contraction assays to intricate organ-on-a-chip models. Comparing 3-D with 2-D cell culture, 6,771 differentially expressed genes (2,896 up, 3,875 down) were found; enriched gene sets within the downregulated genes, identified through Gene Set Enrichment Analysis and Ingenuity Pathway Analysis, were involved in the initiation of DNA replication which implied downregulation of fibroblast proliferation in 3-D. Observation of cells for 72 h in 2-D and 3-D environments confirmed the reduced progression through the cell cycle in 3-D. A focused analysis, examining the Hippo pathway and ECM-associated genes, showed differential patterns of gene expression in the 3-D versus 2-D culture. Altogether, the transcriptional response of fibroblasts cultured in 3-D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a complete switch from proliferation to ECM remodeling.NEW & NOTEWORTHY With the introduction of complex three-dimensional (3-D) lung models, comes a need for understanding cellular behavior in these models. We compared gene expression profiles of human lung fibroblasts grown on two-dimensional (2-D) collagen I-coated surfaces with those in 3-D collagen I hydrogels. RNA sequencing and subsequent pathway analyses showed decreased proliferation, increased extracellular matrix (ECM) remodeling, and altered Hippo signaling and ECM deposition-related gene signatures. These findings highlight unique responses of fibroblasts in 3-D models.


Assuntos
Matriz Extracelular , Pulmão , Humanos , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Hidrogéis/metabolismo
3.
Epigenetics ; 18(1): 2175522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016026

RESUMO

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is highly expressed in smokers, but little is known about the molecular mechanism of UCHL1 in airway epithelium and its possible role in affecting extracellular matrix (ECM) remodelling in the underlying submucosa. Since cigarette smoking is a major cause of lung diseases, we studied its effect on UCHL1 expression and DNA methylation patterns in human bronchial epithelial cells, obtained after laser capture micro-dissection (LCM) or isolated from residual tracheal/main stem bronchial tissue. Targeted regulation of UCHL1 expression via CRISPR/dCas9 based-epigenetic editing was used to explore the function of UCHL1 in lung epithelium. Our results show that cigarette smoke extract (CSE) stimulated the expression of UCHL1 in vitro. The methylation status of the UCHL1 gene was negatively associated with UCHL1 transcription in LCM-obtained airway epithelium at specific sites. Treatment with a UCHL1 inhibitor showed that the TGF-ß1-induced upregulation of the ECM gene COL1A1 can be prevented by the inhibition of UCHL1 activity in cell lines. Furthermore, upon downregulation of UCHL1 by epigenetic editing using CRISPR/dCas-EZH2, mRNA expression of COL1A1 and fibronectin was reduced. In conclusion, we confirmed higher UCHL1 expression in current smokers compared to non- and ex-smokers, and induced downregulation of UCHL1 by epigenetic editing. The subsequent repression of genes encoding ECM proteins suggest a role for UCHL1 as a therapeutic target in fibrosis-related disease.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Brônquios , Colágeno/metabolismo , Células Epiteliais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
4.
Am J Respir Crit Care Med ; 208(10): 1075-1087, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708400

RESUMO

Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fumantes , Humanos , Interleucina-33/genética , Fumar/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Perfilação da Expressão Gênica
5.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159335

RESUMO

We recently identified microRNAs (miRNAs) associated with chronic mucus hypersecretion (CMH) in chronic obstructive pulmonary disease (COPD), which were expressed in both airway epithelial cells and fibroblasts. We hypothesized that these miRNAs are involved in communication between fibroblasts and epithelium, contributing to airway remodeling and CMH in COPD. Primary bronchial epithelial cells (PBECs) differentiated at the air-liquid interface, and airway fibroblasts (PAFs) from severe COPD patients with CMH were cultured alone or together. RNA was isolated and miRNA expression assessed. miRNAs differentially expressed after co-culturing were studied functionally using overexpression with mimics in mucus-expressing human lung A549 epithelial cells or normal human lung fibroblasts. In PBECs, we observed higher miR-708-5pexpression upon co-culture with fibroblasts, and miR-708-5p expression decreased upon mucociliary differentiation. In PAFs, let-7a-5p, miR-31-5p and miR-146a-5p expression was significantly increased upon co-culture. miR-708-5p overexpression suppressed mucin 5AC (MUC5AC) secretion in A549, while let-7a-5poverexpression suppressed its target gene COL4A1 in lung fibroblasts. Our findings suggest that let-7a-5p, miR-31-5p and miR-146a-5p may be involved in CMH via fibroblasts-epithelium crosstalk, including extracellular matrix gene regulation, while airway epithelial expression of miR-708-5p may be involved directly, regulating mucin production. These findings shed light on miRNA-mediated mechanisms underlying CMH, an important symptom in COPD.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Epitélio/metabolismo , Fibroblastos/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Muco/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
6.
Cell Biol Toxicol ; 37(4): 497-513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33040242

RESUMO

Cadmium (Cd), a highly toxic heavy metal, is widespreadly distributed in the environment. Chronic exposure to Cd is associated with the development of several diseases including cancers. Over the decade, many researches have been carried on various models to examine the acute effects of Cd; yet, limited knowledge is known about the long-term Cd exposure, especially in the human lung cells. Previously, we showed that chronic Cd-exposed human bronchial epithelial BEAS-2B cells exhibited transformed cell properties, such as anchorage-independent growth, augmented cell migration, and epithelial-mesenchymal transition (EMT). To study these Cd-transformed cells more comprehensively, here, we further characterized their subproteomes. Overall, a total of 63 differentially expressed proteins between Cd-transformed and passage-matched control cells among the five subcellular fractions (cytoplasmic, membrane, nuclear-soluble, chromatin-bound, and cytoskeletal) were identified by mass spectrometric analysis and database searching. Interestingly, we found that the thiol protease ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) is one of the severely downregulated proteins in the Cd-transformed cells. Notably, the EMT phenotype of Cd-transformed cells can be suppressed by forced ectopic expression of UCHL1, suggesting UCHL1 as a crucial modulator in the maintenance of the proper differentiation status in lung epithelial cells. Since EMT is considered as a critical step during malignant cell transformation, finding novel cellular targets that can antagonize this transition may lead to more efficient strategies to inhibit cancer development. Our data report for the first time that UCHL1 may play a function in the suppression of EMT in Cd-transformed human lung epithelial cells, indicating that UCHL1 might be a new therapeutic target for chronic Cd-induced carcinogenesis. Graphical abstract.


Assuntos
Cádmio , Ubiquitina Tiolesterase , Cádmio/toxicidade , Movimento Celular , Células Epiteliais , Transição Epitelial-Mesenquimal , Humanos , Ubiquitina Tiolesterase/genética
7.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375250

RESUMO

Prenatal smoke exposure (PreSE) is a risk factor for nicotine dependence, which is further enhanced by postnatal smoke exposure (PostSE). One susceptibility gene to nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine in the liver. Higher CYP2A6 activity is associated with nicotine dependence and could be regulated through DNA methylation. In this study we investigated whether PostSE further impaired PreSE-induced effects on nicotine metabolism, along with Cyp2a5, orthologue of CYP2A6, mRNA expression and DNA methylation. Using a mouse model where prenatally smoke-exposed adult offspring were exposed to cigarette smoke for 3 months, enzyme activity, mRNA levels, and promoter methylation of hepatic Cyp2a5 were evaluated. We found that in male offspring, PostSE increased PreSE-induced cotinine levels and Cyp2a5 mRNA expression. In addition, both PostSE and PreSE changed Cyp2a5 DNA methylation in male groups. PreSE however decreased cotinine levels whereas it had no effect on Cyp2a5 mRNA expression or methylation. These adverse outcomes of PreSE and PostSE were most prominent in males. When considered in the context of the human health aspects, the combined effect of prenatal and adolescent smoke exposure could lead to an accelerated risk for nicotine dependence later in life.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Metilação de DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Metabólica , Nicotina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fumaça/efeitos adversos , Animais , Animais Recém-Nascidos , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Regiões Promotoras Genéticas
8.
Environ Int ; 145: 106132, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979814

RESUMO

BACKGROUND: Exposure to polycyclic aromatic hydrocarbons (PAHs) is linked to abnormal lipid metabolism, but evidence regarding PAHs as risk factors for dyslipidemia is lacking. OBJECTIVE: To investigate the respective role and interaction of PAH exposure and antioxidant consumption in the risk for pediatric dyslipidemia. METHODS: We measured the concentrations of serum lipids, superoxide dismutase (SOD) and urinary hydroxylated PAHs (OH-PAHs) in 403 children, of which 203 were from an e-waste-exposed area (Guiyu) and 200 were from a reference area (Haojiang). Biological interactions were calculated by additive models. RESULTS: Guiyu children had higher serum triglyceride concentration and dyslipidemia incidence, and lower serum concentration of high-density lipoprotein (HDL) than Haojiang children. Elevated OH-PAH concentration, and concomitant SOD reduction, were both associated with lower HDL concentration and higher hypo-HDL risk (∑3OH-Phes: B for lgHDL = -0.048, P < 0.01; OR for hypo-HDL = 3.708, 95% CI: 1.200, 11.453; SOD: BT3 for lgHDL = 0.061, P < 0.01; ORT3 for hypo-HDL = 0.168, 95% CI: 0.030, 0.941; all were adjusted for confounders). Biological interaction between phenanthrol exposure and SOD reduction was linked to dyslipidemia risk (RERI = 2.783, AP = 0.498, S = 2.537). Children with both risk factors (higher ∑3OH-Phes and lower SOD) had 5.594-times (95% CI: 1.119, 27.958) the dyslipidemia risk than children with neither risk factors (lower ∑3OH-Phes and higher SOD). CONCLUSION: High PAH exposure combined with SOD reduction is recommended for predicting elevated risk for pediatric dyslipidemia. Risk assessment of PAH-related dyslipidemia should take antioxidant concentration into consideration.


Assuntos
Dislipidemias , Hidrocarbonetos Policíclicos Aromáticos , Antioxidantes , Criança , Dislipidemias/epidemiologia , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fatores de Risco , Superóxido Dismutase
9.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L742-L751, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783621

RESUMO

Prenatal smoke exposure is a risk factor for impaired lung development in children. Recent studies have indicated that amphiregulin (AREG), which is a ligand of the epidermal growth factor receptor (EGFR), has a regulatory role in airway epithelial cell differentiation. In this study, we investigated the effect of prenatal smoke exposure on lung epithelial cell differentiation and linked this with AREG-EGFR signaling in 1-day-old mouse offspring. Bronchial and alveolar epithelial cell differentiations were assessed by immunohistochemistry. Areg, epidermal growth factor (Egf), and mRNA expressions of specific markers for bronchial and alveolar epithelial cells were assessed by RT-qPCR. The results in neonatal lungs were validated in an AREG-treated three-dimensional mouse lung organoid model. We found that prenatal smoke exposure reduced the number of ciliated cells and the expression of the cilia-related transcription factor Foxj1, whereas it resulted in higher expression of mucus-related transcription factors Spdef and Foxm1 in the lung. Moreover, prenatally smoke-exposed offspring had higher numbers of alveolar epithelial type II cells (AECII) and lower expression of the AECI-related Pdpn and Gramd2 markers. This was accompanied by higher expression of Areg and lower expression of Egf in prenatally smoke-exposed offspring. In bronchial organoids, AREG treatment resulted in fewer ciliated cells and more basal cells when compared with non-treated bronchiolar organoids. In alveolar organoids, AREG treatment led to more AECII cells than non-treated AECII cells. Taken together, the observed impaired bronchial and alveolar cell development in prenatally smoke-exposed neonatal offspring may be induced by increased AREG-EGFR signaling.


Assuntos
Anfirregulina/metabolismo , Anfirregulina/farmacologia , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/metabolismo , Fumaça/efeitos adversos , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , /efeitos adversos
10.
Epigenetics ; 15(12): 1370-1385, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32573327

RESUMO

Prenatal smoke exposure (PSE) is a risk factor for nicotine dependence. One susceptibility gene for nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine and nicotine clearance in the liver. Higher activity of the CYP2A6 enzyme is associated with nicotine dependence, but no research has addressed the PSE effects on the CYP2A6 gene or its mouse homologue Cyp2a5. We hypothesized that PSE affects Cyp2a5 promoter methylation, Cyp2a5 mRNA levels, and nicotine metabolism in offspring. We used a smoke-exposed pregnant mouse model. RNA, DNA, and microsomal protein were isolated from liver tissue of foetal, neonatal, and adult offspring. Enzyme activity, Cyp2a5 mRNA levels, and Cyp2a5 methylation status of six CpG sites within the promoter region were analysed via HPLC, RT-PCR, and bisulphite pyrosequencing. Our data show that PSE induced higher cotinine levels in livers of male neonatal and adult offspring compared to controls. PSE-induced cotinine levels in neonates correlated with Cyp2a5 mRNA expression and promoter methylation at CpG-7 and CpG+45. PSE increased methylation in almost all CpG sites in foetal offspring, and this effect persisted at CpG-74 in male neonatal and adult offspring. Our results indicate that male offspring of mothers which were exposed to cigarette smoke during pregnancy have a higher hepatic nicotine metabolism, which could be regulated by DNA methylation. Given the detected persistence into adulthood, extrapolation to the human situation suggests that sons born from smoking mothers could be more susceptible to nicotine dependence later in life.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/genética , Metilação de DNA , Fígado/metabolismo , Nicotina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Ilhas de CpG , Feminino , Fígado/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Environ Int ; 139: 105720, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32289583

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs), as a group of persistent organic pollutants, are linked to impaired immune function and low-grade inflammation in adults and children. However, the potential of PAHs to lead to a cytokine storm associated with AhR (aryl hydrocarbon receptor) and NLRP3 (NLR family pyrin domain containing 3) in humans has been poorly studied. OBJECTIVES: We aimed to investigate the associations between PAH exposure, AhR and NLRP3 expression, and cytokines associated with a cytokine storm in healthy preschoolers. METHODS: Basic demographic surveys and physical examinations were conducted on 248 preschoolers from an electronic waste (e-waste) recycling area (Guiyu, n = 121) and a reference area (Haojiang, n = 127). Ten urinary PAH metabolite (OH-PAH) concentrations were measured. We also measured the expression levels of AhR and NLRP3 and seventeen serum cytokine levels. RESULTS: The concentrations of multiple OH-PAHs were significantly higher in the exposed group than those in the reference group, especially 1-hydroxynaphthalene (1-OH-Nap) and 2-hydroxynaphthalene (2-OH-Nap). PAH exposure was closely related to a child's living environment and hygiene habits. Expression levels of AhR and NLRP3 were significantly higher in the exposed group than in the reference group. Similarly, serum IL-1ß, IL-4, IL-5, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-22, IL-23, and IFN-γ levels were notably higher in the e-waste-exposed children than in the reference children. After adjusting for age, gender, BMI, family income, parental education level, and second-hand smoke exposure, we found that increased PAH exposure was associated with higher AhR and NLRP3 expression and elevated IL-4, IL-10, IL-12p70, IL-18, IL-22, IL-23, TNF-α, and IFN-γ levels. The associations between PAH exposure and IL-1ß, IL-18, IFN-γ, and TNF-ß were mediated by NLRP3 expression, and the relationships between PAH exposure and IL-4, IL-10, IL-12p70, IL-22, IL-23, and TNF-α were mediated by AhR expression. CONCLUSIONS: Our findings suggest that the association between PAH exposure and a cytokine storm may be mediated by AhR and NLRP3 expression among preschoolers.


Assuntos
Resíduo Eletrônico , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pré-Escolar , Citocinas , Resíduo Eletrônico/análise , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo
12.
Environ Int ; 138: 105660, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199227

RESUMO

BACKGROUND: Exposure to atmospheric fine particle matter (PM2.5) pollution and the absorbed pollutants is known to contribute to numerous adverse health effects in children including to growth. OBJECTIVE: The aim of this study was to evaluate exposure levels of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in an electronic waste (e-waste) polluted town, Guiyu, and to investigate the associations between PM2.5-PAH exposure, insulin-like growth factor 1 (IGF-1) levels and child growth. METHODS: This study recruited 238 preschool children (3-6 years of age), from November to December 2017, of which 125 were from Guiyu (an e-waste area) and 113 were from Haojiang (a reference area). Levels of daily PM2.5 and PM2.5-bound ∑16 PAHs were assessed to calculate individual chronic daily intakes (CDIs). IGF-1 and IGF-binding protein 3 (IGFBP-3) concentrations in child plasma were also measured. The associations and further mediation effects between exposure to PM2.5 and PM2.5-bound PAHs, child plasma IGF-1 concentration, and child height were explored by multiple linear regression models and mediation effect analysis. RESULTS: Elevated atmospheric PM2.5-bound ∑16 PAHs and PM2.5 levels were observed in Guiyu, and this led to more individual CDIs of the exposed children than the reference (all P < 0.001). The median level of plasma IGF-1 in the exposed group was lower than in the reference group (91.42 ng/mL vs. 103.59 ng/mL, P < 0.01). IGF-1 levels were negatively correlated with CDIs of PM2.5, but not with CDIs of PM2.5-bound ∑16 PAHs after adjustment. An increase of 1 µg/kg of PM2.5 intake per day was associated with a 0.012 cm reduction of child height (95% CI: -0.014, -0.009), and similarly, an elevation of 1 ng/kg of PM2.5-bound ∑16 PAHs intake per day was associated with a 0.022 cm decrease of child height (95% CI: -0.029, -0.015), both after adjustment of several potential confounders (age, gender, family cooking oil, picky eater, eating sweet food, eating fruits or vegetables, parental education level and monthly household income). The decreased plasma IGF-1 concentration mediated 15.8% of the whole effect associated with PM2.5 exposure and 23.9% of the whole effect associated with PM2.5-bound ∑16 PAHs exposure on child height. CONCLUSION: Exposure to atmospheric PM2.5-bound ∑16 PAHs and PM2.5 is negatively associated with child height, and is linked to reduced IGF-1 levels in plasma. This may suggest a causative negative role of atmospheric PM2.5-bound exposures in child growth.


Assuntos
Poluentes Atmosféricos , Resíduo Eletrônico , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Criança , Pré-Escolar , Cidades , Monitoramento Ambiental , Humanos , Fator de Crescimento Insulin-Like I , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
13.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L549-L561, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913647

RESUMO

Prenatal smoke exposure (PSE) is associated with reduced birth weight, impaired fetal development, and increased risk for diseases later in life. Changes in DNA methylation may be involved, as multiple large-scale epigenome-wide association studies showed that PSE is robustly associated with DNA methylation changes in blood among offspring in early life. Insulin-like growth factor-1 (IGF1) is important in growth, differentiation, and repair processes after injury. However, no studies investigated the organ-specific persistence of PSE-induced methylation change of Igf1 into adulthood. Based on our previous studies on the PSE effect on Igf1 promoter methylation in fetal and neonatal mouse offspring, we now have extended our studies to adulthood. Our data show that basal Igf1 promoter methylation generally increased in the lung but decreased in the liver (except for 2 persistent CpG sites in both organs) across three different developmental stages. PSE changed Igf1 promoter methylation in all three developmental stages, which was organ and sex specific. The PSE effect was less pronounced in adult offspring compared with the fetal and neonatal stages. In addition, the PSE effect in the adult stage was more pronounced in the lung compared with the liver. For most CpG sites, an inverse correlation was found for promoter methylation and mRNA expression when the data of all three stages were combined. This was more prominent in the liver. Our findings provide additional evidence for sex- and organ-dependent prenatal programming, which supports the developmental origins of health and disease (DOHaD) hypothesis.


Assuntos
Metilação de DNA , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like I/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Regiões Promotoras Genéticas , Fumaça/efeitos adversos , Animais , Animais Recém-Nascidos , Epigênese Genética , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fatores Sexuais
15.
Environ Res ; 171: 536-545, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763874

RESUMO

This study explored the effects of maternal exposure to e-waste environmental heavy metals on neonatal DNA methylation patterns. Neonatal umbilical cord blood (UCB) samples were collected from participants that resided in an e-waste recycling area, Guiyu and a nearby non-e-waste area, Haojiang in China. The concentrations of UCB lead (Pb), cadmium (Cd), manganese (Mn) and chromium (Cr) were measured by graphite furnace atomic absorption spectrometry. Epigenome-wide DNA methylation at 473, 844 CpG sites (CpGs) were assessed by Illumina 450 K BeadChip. The differential methylation of CpG sites from the microarray were further validated by bisulfite pyrosequencing. Bioinformatics analysis showed that 125 CpGs mapped to 79 genes were differential methylation in the e-waste exposed group with higher concentrations of heavy metals in neonatal UCB. These genes mainly involve in multiple biological processes including calcium ion binding, cell adhesion, embryonic morphogenesis, as well as in signaling pathways related to NFkB activation, adherens junction, TGF beta and apoptosis. Among them, BAI1 and CTNNA2 (involving in neuron differentiation and development) were further verified to be hyper- and hypo-methylated, respectively, which were associated with maternal Pb exposure. These results suggest that maternal exposure to e-waste environmental heavy metals (particularly lead) during pregnancy are associated with peripheral blood differential DNA methylation in newborns, specifically the genes involving in brain neuron development.


Assuntos
Metilação de DNA , Resíduo Eletrônico , Exposição Materna/estatística & dados numéricos , Metais Pesados , China , Feminino , Humanos , Recém-Nascido , Gravidez , Reciclagem
16.
Clin Exp Allergy ; 48(11): 1378-1390, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30244507

RESUMO

BACKGROUND: The prevalence of asthma and chronic obstructive pulmonary disease (COPD) has risen markedly over the last decades and is reaching epidemic proportions. However, underlying molecular mechanisms are not fully understood, hampering the urgently needed development of approaches to prevent these diseases. It is well established from epidemiological studies that prenatal exposure to cigarette smoke is one of the main risk factors for aberrant lung function development or reduced fetal growth, but also for the development of asthma and possibly COPD later in life. Of note, recent evidence suggests that the disease risk can be transferred across generations, that is, from grandparents to their grandchildren. While initial studies in mouse models on in utero smoke exposure have provided important mechanistic insights, there are still knowledge gaps that need to be filled. OBJECTIVE: Thus, in this review, we summarize current knowledge on this topic derived from mouse models, while also introducing two other relevant animal models: the fruit fly Drosophila melanogaster and the zebrafish Danio rerio. METHODS: This review is based on an intensive review of PubMed-listed transgenerational animal studies from 1902 to 2018 and focuses in detail on selected literature due to space limitations. RESULTS: This review gives a comprehensive overview of mechanistic insights obtained in studies with the three species, while highlighting the remaining knowledge gaps. We will further discuss potential (dis)advantages of all three animal models. CONCLUSION/CLINICAL RELEVANCE: Many studies have already addressed transgenerational inheritance of disease risk in mouse, zebrafish or fly models. We here propose a novel strategy for how these three model organisms can be synergistically combined to achieve a more detailed understanding of in utero cigarette smoke-induced transgenerational inheritance of disease risk.


Assuntos
Asma/etiologia , Reações Cruzadas/imunologia , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Fumar/efeitos adversos , Alérgenos/imunologia , Animais , Asma/epidemiologia , Modelos Animais de Doenças , Feminino , Humanos , Fenótipo , Gravidez
17.
Eur Respir J ; 52(3)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30072506

RESUMO

Chronic mucus hypersecretion (CMH) is a common feature in chronic obstructive pulmonary disease (COPD) and is associated with worse prognosis and quality of life. This study aimed to identify microRNA (miRNA)-mRNA regulatory networks underlying CMH.The expression profiles of miRNA and mRNA in bronchial biopsies from 63 COPD patients were associated with CMH using linear regression. Potential mRNA targets of each CMH-associated miRNA were identified using Pearson correlations. Gene set enrichment analysis (GSEA) and STRING (search tool for the retrieval of interacting genes/proteins) analysis were used to identify key genes and pathways.20 miRNAs and 539 mRNAs were differentially expressed with CMH in COPD. The expression of 10 miRNAs was significantly correlated with the expression of one or more mRNAs. Of these, miR-134-5p, miR-146a-5p and the let-7 family had the highest representation of CMH-associated mRNAs among their negatively correlated predicted targets. KRAS and EDN1 were identified as key regulators of CMH and were negatively correlated predicted targets of miR-134-5p and let-7a-5p, let-7d-5p, and let-7f-5p, respectively. GSEA suggested involvement of MUC5AC-related genes and several other relevant gene sets in CMH. The lower expression of miR-134-5p was confirmed in primary airway fibroblasts from COPD patients with CMH.We identified miR-134-5p, miR-146a-5p and let-7 family, along with their potential target genes including KRAS and EDN1, as potential key miRNA-mRNA networks regulating CMH in COPD.


Assuntos
MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/metabolismo , Idoso , Brônquios/patologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras)/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Qualidade de Vida , RNA Mensageiro/genética
18.
Sci Rep ; 8(1): 5105, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572536

RESUMO

Alternatively activated (M2 or YM1+) macrophages have been associated with the development of asthma but their contribution to disease initiation and progression remains unclear. To assess the therapeutic potential of modulating these M2 macrophages, we have studied inhibition of M2 polarisation during and after development of allergic lung inflammation by treating with cynaropicrin, a galectin-3 pathway inhibitor. Mice that were treated with this inhibitor of M2 polarisation during induction of allergic inflammation developed less severe eosinophilic lung inflammation and less collagen deposition around airways, while the airway α-smooth muscle actin layer was unaffected. When we treated with cynaropicrin after induction of inflammation, eosinophilic lung inflammation and collagen deposition were also inhibited though to a lesser extent. Unexpectedly, both during and after induction of allergic inflammation, inhibition of M2 polarisation resulted in a shift towards neutrophilic inflammation. Moreover, airway hyperresponsiveness was worse in mice treated with cynaropicrin as compared to allergic mice without inhibitor. These results show that M2 macrophages are associated with remodeling and development of eosinophilic lung inflammation, but prevent development of neutrophilic lung inflammation and worsening of airway hyperresponsiveness. This study suggests that macrophages contribute to determining development of eosinophilic or neutrophilic lung inflammation in asthma.


Assuntos
Asma/tratamento farmacológico , Lactonas/uso terapêutico , Macrófagos/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Animais , Asma/imunologia , Asma/patologia , Polaridade Celular/efeitos dos fármacos , Feminino , Macrófagos/imunologia , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Pneumonia/imunologia , Pneumonia/patologia , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia
19.
J Appl Toxicol ; 38(6): 888-895, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29423916

RESUMO

Cadmium (Cd), a carcinogenic toxic metal, is pervasively distributed in the soil, water and air. Chronic exposure to Cd has been correlated to lung disease development including cancers. Although many studies have been conducted to investigate the proteome response of cells challenged with Cd, the epiproteomic responses (i.e., global histone post-translational modifications [PTMs]), particularly in human lung cells, are largely unexplored. Here, we provide an epiproteome profiling of human bronchial epithelial cells (BEAS-2B) chronically treated with cadmium chloride (CdCl2 ), with the aim of identifying global epiproteomic signatures in response to Cd epigenotoxicity. Total histone proteins from Cd-treated and untreated BEAS-2B cells were isolated and subject to quantitative histone PTM-enzyme-linked immunosorbent assay using 18 histone PTM antibodies. Our results unveiled that chronic Cd treatment led to the marked downregulation of H3K4me2 and H3K36me3 and upregulation of H3K9acS10ph, H4K5ac, H4K8ac and H4K12ac PTM marks. Cd-treated cells exhibit transformed cell properties as evidenced by enhanced cell migration and the ability of anchorage-independent growth on soft agar. Notably, treatment of Cd-transformed cells with C646, a potent histone acetyltransferase inhibitor, suppressed the expression of mesenchymal marker genes and cell migration ability of these cells. Taken together, our studies provide for the first time the global epiproteomic interrogation of chronic Cd-exposed human lung cells. The identified aberrant histone PTM alterations associated with Cd-induced epigenotoxicity likely account for the epithelial-mesenchymal transition and neoplastic survival of these cells.


Assuntos
Brônquios/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Acetilação , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Metilação
20.
Sci Total Environ ; 616-617: 988-995, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29096958

RESUMO

Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4+ central memory T cells and CD8+ central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4+ central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8+ central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4+ central memory T cells in these children.


Assuntos
Resíduo Eletrônico/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/sangue , Chumbo/sangue , Linfócitos T/fisiologia , Pré-Escolar , Resíduo Eletrônico/estatística & dados numéricos , Feminino , Humanos , Interleucina-15/sangue , Interleucina-2/sangue , Interleucina-7/sangue , Masculino , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...